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Abstract  
 Analytical models require significant 
simplification of the real-world system, especially in 
the case of solute transport in subsurface 
groundwater. This article presents an analytical study 
of one-dimensional non-reactive solute transport in a 
homogeneous finite porous medium. The governing 
advection-dispersion equation, which includes 
retardation factor, is included for solute transport.  
The solute is initially introduced from periodic point 
source from right end of the domain i.e., . It is 
assumed that the flow is one-dimensional with 
periodic velocity nature and pulse type periodic 
source pollutants are entering in the domain from 
right end of the boundary. The second boundary 
condition is of flux type at sub domain . 
Transport equation is solved analytically by using 
Laplace transformation technique. The developed 
solution should be applicable to a broad variety of 
solute transport problems, especially those in 
homogeneous porous media. Alternate as an 
illustration; solutions for the present problem are 
illustrated by numerical examples and graphs.  
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I. INTRODUCTION 
 Subsurface solute transport is generally 
described and predicted using solute transport 
models. Solute transport by groundwater results from 
complex interactions between physical, chemical, and 
biological processes occurring in natural aquifers. 
The movement of water and solute through the 
unsaturated zone has been of importance in 
traditional applications of groundwater hydrology, 
soil physics and engineering. Actually, the 
groundwater flow in aquifers can be classified into 
three flow states: steady-state flow, unsteady state 
flow, and periodic flow, which are induced by 

steady-state, non-periodic, and periodic forcing, 
respectively. The contaminants tend to enter the 
groundwater system and travel seaward in the 
ambient groundwater flow. They not only pollute the 
groundwater, but also endanger the environment of 
coastal beaches. The understanding and modeling of 
contaminant transport in coastal aquifers are vital to 
good management of the coastal environment.  
 A large number of physical and mathematical 
models have been developed and deployed to study 
the hydrodynamic processes involved in groundwater 
and surface water. Advective transport due to a 
falling or fluctuating water table has received little 
attention in the literature. When the water table falls, 
the originally saturated soil becomes unsaturated 
allowing contaminated soil gas to enter the pores and 
contact the residual draining water. Contaminants 
from surface sources enter the groundwater system 
with rainfall recharge and travel towards water table. 
The instabilities may generated at the fresh water 
interface due to the high concentration difference and 
to the water fluctuation of the contaminants carried 
out by the fresh water and may lead to the attenuation 
or enhancement the contaminant spread, depending 
on physical properties of porous medium. Velocity 
fluctuations at the scale of pores cause a swarm of 
solute particles to spread about their mean position. 
This spreading is described at the Darcy scale 
through dispersion coefficients. The transport of 
migrants in the subsurface water proceeds by 
molecular diffusion, advection and hydrodynamic 
dispersion. The naturally occurring mixing effect due 
to river fluctuations is an important process to 
consider in the assessment of contaminant transport 
from the confined disposal facility. Jacob [1] was the 
first to extend periodic solutions from heat flow to 
groundwater flow for use in quantifying aquifer 
response to tidal fluctuations. Ferris [2] derived an 
equation to describe the change of groundwater head 
in a confined aquifer in response to sinusoidal 
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oscillations in sea level. Carr and Van Der Kamp [3] 
developed a method to estimate hydraulic 
conductivity and the storage coefficient separately in 
aquifers with tidal boundary fluctuations on the basis 
of amplitude and phase lag. Fang et al. [4] simulate 
the tidal fluctuation of the groundwater table, 
numerically, by using a two-dimensional finite 
element model. Flow was considered in a simplified 
domain with a vertical beach face. The cause of the 
spatial variations in flow velocity is normally 
attributed to spatial variations in hydraulic 
conductivity. The study of flow against dispersion in 
non-adsorbing porous media was presented by 
Marino [5] in which the flows were opposite to 
dispersion. The flows were assumed to be one-
dimensional in a horizontal direction and the average 
velocities were taken to be constant throughout the 
flow field. Al-Niami and Rushton [6] studied 
dispersion in the direction opposite to flow in one-
dimensional flow. Latter on Kumar [7] studied 
similar problem but with an exponential change in 
concentration at the source of the dispersion and an 
unsteady one-dimensional flow. Gelhar et al. [8] and 
Matheron and De’Marsily [9] studied solute transport 
in stratified aquifer of infinite thickness. They 
calculated dispersion under the assumption that the 
permeability of each layer is random and the flow is 
in a direction parallel to the layers. Molz et al. [10] 
have suggested that it may be better to try and 
incorporate the spatial variations in hydraulic 
conductivity rather than try to represent the mixing 
with mechanical dispersion. Goode and Konikow 
[11] demonstrated, however, that spatial variations in 
hydraulic conductivity are not the only cause of 
spatial variations in groundwater flow velocity. They 
concluded that dispersion also could be caused by 
temporal variations in flow velocity. Koch and Zhang 
[12] investigated the effects of contaminant density 
on its movement also in a steady horizontal flow field 
by performing a series of numerical exercises. Zhang 
and Neuman [13] derived first-order expressions of 
macro-dispersion accounting for temporal variability 
in the velocity fields.  
 Attinger et al., [14] and Dentz et al., [15-16] 
studied the temporal behavior of dispersion 
coefficients in a stochastic modeling framework 
developed up to the second order in the fluctuations 
of the random fields, for a chemically and physically 

heterogeneous medium respectively under steady 
state flow conditions. Robinson and Gallagher [17] 
further developed a two-dimensional, field scale, 
finite element model based on density dependent 
fluid flow with water table and dynamic tidal 
boundary conditions. Jiao and Tang [18] derived an 
analytical solution to study the groundwater head 
fluctuations in the confined aquifer of a coastal 
aquifer-aquitard-aquifer system. Vanderbroght et al., 
[19] evaluated the effect of flow rate and flow regime 
on solute transport in two soils, sandy loam and loam. 
Cirpka [20] analyzed the transverse dispersion 
coefficient considering a spatially uniform flow field 
of a kinetically sorbing compound under sinusoidal 
temporal fluctuations. Kumar et al. [21] obtained 
analytical solutions for one-dimensional advection–
diffusion equation with variable coefficients in a 
longitudinal finite initially solute free domain, for 
temporally and spatially dependent dispersion 
problems.  
 In almost all the studied have done so for by 
different investigators, they considered seepage 
velocity steady, un-steady, exponential or sinusoidal 
and boundary condition non-periodic. Deviating 
these in the present study, a mathematical model of 
contaminant transport in a homogeneous porous 
medium is analyzed analytically. To solve the 
advection-dispersion equation analytically we used 
Laplace transformation technique for a time-
dependent periodic source of pollutant which 
entering from right end of the domain. The seepage 
flow is considered towards left to right direction i.e., 

 which is the solute transport 

phenomena against the flow. Such a situation often 
occurs in practice when poor quality water is 
prevented from spreading by a flow of a freshwater. 
Authors basic attention is to discussed the behavior 
of concentration between   to . 

Analytical solutions can provide fast estimations of 
concentration distributions for solute movements and 
benchmark tools for evaluating numerical models.  
 
 
 
II. MATHEMATICAL FORMULATION AND       
  SOLUTION OF THE PROBLEM 
 Schematic representation of present problem is 
shown in Fig. (1). The porous domain is assumed to 
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be horizontal, the seepage flow is along the  

coordinate and the length of the porous domain is . 

Initially the domain has already some pollution while 
a pulse type periodic injection of solute mass is 
entering from a source at right end of the boundary 
i.e., at position . The concentration gradient is 

assumed zero at the sub domain  of the present  
problem. 
 
 
 
 
 
 
  
 
 
 
 

 
 
 

Fig. 1 
 
 One-dimensional advection-dispersion equation 
in homogeneous porous media with retardation factor 
can be written as 

            (1) 

 This equation generally postulate that solutes 
move through porous media by advection, 
mechanical dispersion and molecular diffusion 
(induced by concentration gradients). In which  is 

the solute concentration in the liquid phase. The 
dispersion coefficient,  presumably includes the 

effects of both molecular diffusion and mixing in the 
axial direction, however the effect of molecular 
diffusion is excluded because that the mechanical 
dispersion mostly dominate the hydrodynamic 
dispersion process during solute transport. In Eq. (1), 
 and  may be constant or function of time or space 

and R is retardation factor accounting for equilibrium 
linear sorption processes. The retardation factor 
accounts of transport processes occurring both in 
liquid and in solid phases unlike contaminant 
transport. The dimension of  and  are   and 

 respectively. R is the dimension less quantity. 

The term on the left side of the equal sign indicate the 
retardation factor and change of concentration in 
time, the first two terms on the right side describe 
hydrodynamic dispersion and groundwater velocity. 
If both the parameters are independent to independent 
variables  and , then these are called constant 

dispersion and uniform flow velocity respectively.  
 The coefficient of dispersion is considered 
directly proportional to seepage velocity (Marino [5], 
Yim and Mohsen [22]), i.e. 
        

 The dispersion coefficient varies in accordance 
with the seepage velocity. Let us write            

, so that , 

where  is a angular frequency whose dimension is 

inverse to the time variable . Only positive value of 

seepage velocity is considered throughout the 
proposed problem.  
Eq. (1) becomes,  

       (2) 

where ,   are constants along the respective 

direction.  
Let us introduce a new time variable using the 
following transformation (Crank [23]), 

       or       (3) 

Now differential equation (2) reduces into constant 
coefficients as 

                                   (4) 

 Initially the domain is not solute free. Let us 
assume it is linear increasing function of space 
variable. An input concentration of periodic nature is 
assumed at the  of the domain. Under above 

assumptions, the initial and boundary conditions 
mathematically can be written as 
 ,   ,       (5) 

   ,  (6a) 

  ,   ,                                  (6b) 

where   is the resident concentration and  is a 

constant which is less than one and its dimension is 
inverse of space variable. The above conditions in 
terms of new time variable may be written as 
 ,   ,      (7) 

 

 

   
Seepage velocity 

Source entering 
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, ,                                                                                                                                                                                           

                                                                               (8a) 

  ,   ,                                 (8b) 

Now introducing a new dependent variable by 
following transformation 

             (9) 

The set of Eqs. (4), (7) and (8) reduced into 

                                                  (10) 

, ,     (11) 

,                                                                                                                                                                                                                
                                                                             (12a)    

   ,  ,                      

(12b) 

where    ,  .                     

Applying Laplace transformation on Eqs. (10) – (12), 
we have 

             (13) 

     

  

 ,   (14a)  

                                      (14b) 

where   and  p is the 

Laplace transformation parameter. 
Thus the general solution of Eq. (13) may be written 
as 
   

     

  .                                                             (15) 

Using conditions (14a,b) on the above solution, we 
get  

         

    

    

    

     

      (16) 

 and       

    

         

    

 

      (17)  

Thus the solution in the Laplacian domain may be 
written as 

       

    

         

       

       

   

                                            (18) 

Taking Laplace inverse transformation of equation 
(18) by using complex inversion formulae which is 
discussed in detail in Appendix, the solution of 
advection-dispersion solute transport for periodic 
input condition in terms of  as,  

   
; 

                     (19a)       

 

  ;    (19b) 

where    
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, 

,  , 

,  

 

 
   ,                            

 

   ,  

  

             

 

   ,  

 ,   ,    ,  is the 

positive root of the  , 

and . 

 
III. RESULTS AND DISCUSSION 
 The parameters governing the solute transport 
through porous domain vary significantly depending 
upon the nature of any particular site of the pollutant. 
Thus, to illustrate the significant factors arising from 
the use of this formulation, consideration will be 
given to the hypothetical case of  porous domain. The 
numerical values of majority of the parameters used 
for model simulations presented here are taken 
directly from the literature or determined using 
existing empirical relationships. As an example, 
assumed the following value of parameters;  

(m2/day),  (m/day),  ,  

 ,   and  

 . All figures are drawn in a domain 

 i.e.,  and  where 

 is a point lies between  . The roots of 

 are taken from Carslaw and Jaeger [24], pp. 492. 

Only six roots are taken into account because other 
roots have no significant effect on the numerical 
values of the derived solution. Figs. (2, 3, 4) are 
drawn when the source pollution being entering in 
the domain while Figs. (5, 6, 7) shows the 
concentration profiles when source pollutant not 
entering in the domain. The time of elimination 
(pollutant is not entering in the domain) of source 
pollution is taken .  

 Fig. (2) shows dimensionless concentration 
profiles in the domain  for various 

times  (day) ,  and  and retardation 

factor . The Fig. (2) reveals that as the time 

increases the concentration values continuously 
increases. Fig. (3) is drawn for different retardation 
factors ,  and  with fixed time  

(day) . It indicate that the effect of retardation 

factor on concentration profiles. It also indicate that 
as the retardation increases the concentration 
distribution in the domain continuously decreases at 
particular time. Fig. (4) shows the influence of 
angular frequency of flow on solute concentration 
which has taken ,  and  and 

fixed retardation factor  at time  

(day) . It is observed that the concentration 

values are higher for higher angular frequency and 
lower for lower angular frequency. 
 Figs. (5, 6, 7) are drawn for solution (19b). The 
trend of Figs. (5, 6, 7) are reverse of Figs. (2, 3, 4). 
Fig. (5) are drawn for various times  (day) , 

 and  and fixed retardation factor which shows 

the concentration values are lower for higher time. 
Fig. (6) shows the concentration profile for different 
retardation factors  and   and fixed time 

 (day) . It indicates that the concentration 
values are higher for higher retardation factor in the 
domain. Fig. (7) is drawn for different angular 
frequency ,  and  with fixed 

retardation factor  at time  (day) . It 
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is observed that, the concentration value is lower for 
higher angular frequency. 
 
IV. CONCLUSION 
 An analytical solution for the transport of non-
reactive solute in homogeneous porous media has 
been developed and some of the main features of the 
obtained results have been illustrated. The basic 
assumption in the present study is dispersion 
coefficient directly proportional to seepage flow 
(which is of periodic nature). The governing transport 
equation is solved analytically, implying Laplace 
transform technique. The effect of periodic source 
concentration on temporal distribution of solute 
concentration is illustrated in different graphs. The 
value of the period of the solution plays an important 
role in the discussion of periodic solutions. 
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APPENDIX: DERIVATION OF LAPLACE 
INVERSION TRANSFORM 
 The procedure used to invert the Laplace 
transform is to evaluate the closed contour and used 
the residue theorem. Branch point must be excluded 
from inside the contour and the original solution.  

, can be obtained by finding the solution to  

   (A-1) 

or    
  

         (A-2) 

where Res (i) are the residue at the poles which lie to 
the left of the line  and outside of the contour 

. From Eq. (18), the poles of the expressions 

   ,  ,   and     

 

are  ,  pole of order 2,  

  where    is the positive root of the  

, respectively. 

Therefore the residues of expressions with these 
poles may get as follows:        

       (A-3) 

       

                 (A-4) 

 
                  (A-5) 

                    

      (A-6) 

The inverse Laplace transform of equation (18) is 
equal to the sum of the all residues as,  

   

    

   

    

  

    

  

       (A-8) 

The solution of advection-dispersion solute transport 
for periodic input condition in terms of  is 

defined in Eqs. (19a,b). 
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Fig. 2 Concentration profile of solute in presence of input source at different time for fixed retardation 
factor and angular frequency. 
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Fig. 3 Concentration profile of solute in presence of input source at fixed time for different retardation 
factor and one angular frequency. 
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Fig. 4 Concentration profile of solute in presence of input source at fixed time for different angular 
frequency and one retardation factor. 
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Fig. 5 Concentration profile of solute in absence of input source at different time for fixed retardation 
factor and angular frequency. 
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Fig. 6 Concentration profile of solute in absence of input source at fixed time for different retardation 
factor and one angular frequency. 
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Fig. 7 Concentration profile of solute in absence of input source at fixed time for different angular 
frequency and one retardation factor. 
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